A Multiplicity Theorem for a Perturbed Second-order Non-autonomous System

نویسندگان

  • FRANCESCA FARACI
  • ANTONIO IANNIZZOTTO
  • F. Faraci
  • A. Iannizzotto
چکیده

In this paper we establish a multiplicity result for a second-order non-autonomous system. Using a variational principle of Ricceri we prove that if the set of global minima of a certain function has at least k connected components, then our problem has at least k periodic solutions. Moreover, the existence of one more solution is investigated through a mountain-pass-like argument.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence and multiplicity of positive solutions for a coupled system of perturbed nonlinear fractional differential equations

In this paper, we consider a coupled system of nonlinear fractional differential equations (FDEs), such that both equations have a particular perturbed terms. Using emph{Leray-Schauder} fixed point theorem, we investigate the existence and multiplicity of positive solutions for this system.

متن کامل

SOME BOUNDARY VALUE PROBLEMS FOR A NON-LINEAR THIRD ORDER O.D.E.

Existence of periodic solutions for non-linear third order autonomous differential equation (O.D.E.) has not been investigated to as large an extent as non-linear second order. The popular Poincare-Bendixon theorem applicable to second order equation is not valid for third order equation (see [3]). This conclusion opens a way for further investigation.

متن کامل

New existence and multiplicity theorems of periodic solutions for non-autonomous second order Hamiltonian systems

In the present paper, the non-autonomous second order Hamiltonian systems { ü(t) = ∇F(t, u(t)), a.e. t ∈ [0, T ] u(0)− u(T ) = u̇(0)− u̇(T ) = 0, (1) are studied and a new existence theorem and a new multiplicity theorem of periodic solutions are obtained. c © 2007 Elsevier Ltd. All rights reserved.

متن کامل

Numerical method for a system of second order singularly perturbed turning point problems

In this paper, a parameter uniform numerical method based on Shishkin mesh is suggested to solve a system of second order singularly perturbed differential equations with a turning point exhibiting boundary layers. It is assumed that both equations have a turning point at the same point. An appropriate piecewise uniform mesh is considered and a classical finite difference scheme is applied on t...

متن کامل

PERIODIC SOLUTIONS OF CERTAIN THREE DIMENSIONAL AUTONOMOUS SYSTEMS

There has been extensive work on the existence of periodic solutions for nonlinear second order autonomous differantial equations, but little work regarding the third order problems. The popular Poincare-Bendixon theorem applies well to the former but not the latter (see [2] and [3]). We give a necessary condition for the existence of periodic solutions for the third order autonomous system...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006